NSC-derived extracellular matrix-modified GelMA hydrogel fibrous scaffolds for spinal cord injury repair

NPG ASIA MATERIALS(2022)

引用 12|浏览13
暂无评分
摘要
Cell-derived extracellular matrix (ECM) has been applied in spinal cord injury (SCI) regeneration because of its various biological functions. However, insufficient mechanical properties limit its wide application. Herein, we developed GelMA/ECM hydrogel fibrous scaffolds (GelMA/ECM scaffolds) that can recruit and enhance the differentiation of neural stem cells (NSCs) by electrospinning and decellularization techniques. Moreover, the GelMA/ECM scaffolds had good mechanical properties and reinforced cell adhesion and proliferation. Compared to GelMA hydrogel fibrous scaffolds (GelMA scaffolds), GelMA/ECM scaffolds promoted more NSCs toward neurons by markedly enhancing the expression of MAP-2 and Tuj-1 and decreasing GFAP expression. In addition, the GelMA/ECM scaffolds significantly reduced the proportion of M1-phenotype macrophages, which is favorable for SCI repair. In vivo, the GelMA/ECM scaffolds recruited NSCs at the injured site, promoted neuron regeneration, and reduced the formation of glial scars and the inflammatory response, which further led to a significant improvement in the functional recovery of SCI. Therefore, this scaffold shows potential in regenerative medicine, mainly in SCI.
更多
查看译文
关键词
Biomaterials,Biomedical materials,Materials Science,general,Optical and Electronic Materials,Structural Materials,Energy Systems,Surface and Interface Science,Thin Films
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要