Nitrogen and molybdenum co-doped CoP nanohoneycombs on 3D nitrogen-doped porous graphene as enhanced electrocatalyst for oxygen evolution reaction

International Journal of Hydrogen Energy(2021)

引用 16|浏览0
暂无评分
摘要
The four-electron transfer process involved in anodic oxygen evolution reaction (OER) of electrocatalytic water splitting causes the sluggish kinetics and significantly limiting the efficiency of energy conversion. It's urgent to explore low-cost, efficient and stable electrocatalysts for OER. In the work, we design the nitrogen and molybdenum co-doped CoP with nanohoneycombs structure on three-dimensional (3D) nitrogen-doped porous graphene (N/Mo–CoP@NPG) as an efficient OER electrocatalyst. The N/Mo–CoP@NPG delivers the current density of 10 mA cm−2 at a low overpotential value of 201 mV in 1.0 M KOH, meanwhile the electrocatalytic activity shows no obvious degradation after 50 h. The NPG substrate provides plentiful ligaments for growth of N/Mo–CoP nanohoneycombs and 3D network for rapid electronic transfer. Additionally, doping N and Mo atoms into CoP synergistically modifies the micromorphology and electronic structure, benefiting the electrocatalytic ability. This work offers a promising strategy to improve the electrocatalytic activity of transition metal phosphides.
更多
查看译文
关键词
Nitrogen doped graphene,Multi-element doping,Transition metal phosphides,Oxygen evolution reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要