One-step carbonization synthesis of in-situ nitrogen-doped carbon tubes using fibrous brucite as the template for supercapacitors

Materials Chemistry and Physics(2022)

引用 6|浏览0
暂无评分
摘要
In-situ nitrogen-doped hollow tubular porous carbon (N-PC) was synthesized by using polyvinylpyrrolidone (PVP) as a source of carbon (C) and nitrogen (N) and fibrous brucite as a template via one-step high-temperature carbonization for the first time. The influences of carbonization temperature and the amount of PVP used on the electrochemical performances of N–PCs have been studied. Electrochemical characterizations exhibit that the N-PC700-0.5 has the high specific capacitance (236.6 F/g at a current density of 0.5 A/g), excellent rate capacity (77.8% at the current density of 10 A/g from 0.5 A/g), and preferable cyclic stability (93.40% capacitance retention rate after 1000 GCD cycles at 5 A/g). Hence, N-PC700-0.5 could be used as an excellent candidate for supercapacitors (SCs). Besides, the N–PCs possess a hollow tubular structure similar to carbon nanotubes (CNTs). This work provides possibilities for preparing nitrogen-doped CNT in a facile and low-cost strategy.
更多
查看译文
关键词
Nitrogen-doped mesoporous carbon tubes,Fibrous brucite,One-step carbonization synthesis,Electrochemical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要