Evaluation of Active Layer Thickness Influence in Long-Term Stability and Degradation Mechanisms in CsFAPbIBr Perovskite Solar Cells

APPLIED SCIENCES-BASEL(2021)

引用 1|浏览12
暂无评分
摘要
Featured Application The degradation in the Perovksite solar cells is one of the main problems to solve in order to achieve commercial devices. In this work influence of the active layer thickness in the degradation mechanisms is studied. Perovskite solar cells (PSCs) have become very popular due to the high efficiencies achieved. Nevertheless, one of the main challenges for their commercialization is to solve their instability issues. A thorough understanding of the processes taking place in the device is key for the development of this technology. Herein, J-V measurements have been performed to characterize PSCs with different active layer thicknesses. The solar cells' parameters in pristine devices show no significant dependence on the active layer thickness. However, the evolution of the solar cells' efficiency under ISOS-L1 protocol reveals a dramatic burn-in degradation, more pronounced for thicker devices. Samples were also characterized using impedance spectroscopy (IS) at different degradation stages, and data were fitted to a three RC/RCPE circuit. The low frequency capacitance in the thickest samples suffers a strong increase with time, which suggests a significant growth in the mobile ion population. This increase in the ion density partially screens the electric field, which yields a reduction in the extracted current and, consequently, the efficiency. This paper has been validated with two-dimensional numerical simulations that corroborate (i) the decrease in the internal electric field in dark conditions in 650 nm devices, and (ii) the consequent reduction in the carrier drift and, therefore, of the effective current extraction and efficiency.
更多
查看译文
关键词
perovskite solar cells, degradation, J-V measurements, impedance spectroscopy, numerical simulations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要