Long-Lasting and Responsive DNA/Enzyme-Based Programs in Serum-Supplemented Extracellular Media

ACS SYNTHETIC BIOLOGY(2022)

引用 0|浏览2
暂无评分
摘要
DNA molecular programs are emerging as promising pharmaceutical approaches due to their versatility for biomolecular sensing and actuation. However, the implementation of DNA programs has been mainly limited to serum-deprived in vitro assays due to the fast deterioration of the DNA reaction networks by the nucleases present in the serum. Here, we show that DNA/enzyme programs are functional in serum for 24 h but are later disrupted by nucleases that give rise to parasitic amplification. To overcome this, we implement three-letter code networks that suppress autocatalytic parasites while still conserving the functionality of DNA/ enzyme programs for at least 3 days in the presence of 10% serum. In addition, we define a new buffer that further increases the biocompatibility and conserves responsiveness to changes in molecular composition across time. Finally, we demonstrate how serum-supplemented extracellular DNA molecular programs remain responsive to molecular inputs in the presence of living cells, having responses 6-fold faster than the cellular division rate, and are sustainable for at least three cellular divisions. This demonstrates the possibility of implementing in situ biomolecular characterization tools for serum-demanding in vitro models. We foresee that the coupling of chemical reactivity to our DNA programs by aptamers or oligonucleotide conjugations will allow the implementation of extracellular synthetic biology tools, which will offer new biomolecular pharmaceutical approaches and the emergence of complex and autonomous in vitro models.
更多
查看译文
关键词
DNA molecular programs,serum,endonuclease,responsive networks,living cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要