OVERCOMING T CELL DYSFUNCTION IN ACIDIC PH TO ENHANCE ADOPTIVE T CELL TRANSFER IMMUNOTHERAPY

ONCOIMMUNOLOGY(2022)

引用 6|浏览37
暂无评分
摘要
The high metabolic activity and insufficient perfusion of tumors leads to the acidification of the tumor microenvironment (TME) that may inhibit the antitumor T cell activity. We found that pharmacological inhibition of the acid loader chloride/bicarbonate anion exchanger 2 (Ae2), with 4,4'-diisothiocyanatostilbene-2,2'-disulfonicacid (DIDS) enhancedCD4(+) andCD8(+) T cell function upon TCR activation in vitro, especially under low pH conditions. In vivo, DIDS administration delayed B16OVA tumor growth in immunocompetent mice as monotherapy or when combined with adoptive T cell transfer of OVA-specificT cells. Notably, genetic Ae2 silencing in OVA-specificT cells improvedCD4(+)/CD8(+) T cell function in vitro as well as their antitumor activity in vivo. Similarly, genetic modification of OVA-specificT cells to overexpress Hvcn1, a selectiveH(+) outward current mediator that prevents cell acidification, significantly improved T cell function in vitro, even at low pH conditions. The adoptive transfer of OVA-specificT cells overexpressing Hvcn1 exerted a better antitumor activity in B16OVA tumor-bearingmice. Hvcn1 overexpression also improved the antitumor activity of CAR T cells specific for Glypican 3 (GPC3) in mice bearing PM299L-GPC3tumors. Our results suggest that preventing intracellular acidification by regulating the expression of acidifier ion channels such as Ae2 or alkalinizer channels like Hvcn1 in tumor-specificlymphocytes enhances their antitumor response by making them more resistant to the acidic TME.
更多
查看译文
关键词
Lymphocytes, intracellular pH, tumor microenvironment, AE2, HVCN1, adoptive cell therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要