Non-reciprocal parity-time symmetry breaking based on magneto-optical and gain/loss double ring resonators

OPTICAL MATERIALS EXPRESS(2022)

引用 2|浏览1
暂无评分
摘要
In this paper, we explore the operation of a nonreciprocal non-Hermitian system consisting of a lossy magneto-optical ring resonator coupled to another ring resonator with gain and loss, and we demonstrate that such a system can exhibit non-reciprocity-based broken parity-time (PT) symmetry and supports one-way exceptional points. The nonreciprocal PT-phase transition is analyzed with the use of both analytical tools based on coupled-mode theory and two-dimensional finite element method simulations. Our calculations show that the response of the system strongly depends on the regime of operation - broken or preserved PT-symmetry. This response is leveraged to show that the system can operate as an optical isolator or a one-way laser with functionality tuned by adjusting loss/gain in the second ring resonator. The proposed system can thus be promising for device applications such as magnetically or even optically switchable non-reciprocal devices and one-way micro-ring lasers. (c) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
更多
查看译文
关键词
double ring resonators,non-reciprocal,parity-time,magneto-optical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要