An NAO-dominated mode of atmospheric circulation drives large decadal changes in wintertime surface climate and snow mass over Eurasia

ENVIRONMENTAL RESEARCH LETTERS(2022)

引用 1|浏览5
暂无评分
摘要
The leading mode of wintertime atmospheric variability over the North Atlantic-North Eurasia sector is dominated by the North Atlantic Oscillation (NAO) and accounts for more than one third of the total variability. This study explores the influences of the leading mode on decadal climate variability of Northern Eurasia. We focus on the little-explored decadal covariations of surface air temperature (SAT), snowfall, snow water equivalent (SWE) and snow cover over the region, using extensive model output from the Coupled Model Intercomparison Project sixth phase. Recent decadal trends (-0.92 sigma per decade) in the leading mode identified, are found to be largely a manifestation of internal climate variability (at least two thirds from the most conservative estimate). These internally-generated decadal trends strongly contributed to recent trends in SAT, snowfall, SWE and snow cover over Eurasia. External forcings should have played a minor role over Eurasia as they usually suggest opposite decadal trends to those observed. An exception is found for snowfall and SWE in east Eurasia, for which external forcings may have driven a large part of the recent upward trends, equally as important as the NAO-dominated mode. This points to a complex interplay between internally-generated and externally-forced climate variability over Northern Eurasia. Model discrepancies are identified in reproducing the linkages between the leading mode and the Eurasian surface climate variability. The internally-generated variability of this leading mode thus represents a large source of uncertainty in future decadal climate projections over Eurasia and, due to the memory effects of snow, also in modelling springtime climate variability.
更多
查看译文
关键词
atmospheric circulation, Eurasian climate variability, decadal trends, internally-generated variability, externally-forced variability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要