PGPB Improve Photosynthetic Activity and Tolerance to Oxidative Stress in Brassica napus Grown on Salinized Soils

APPLIED SCIENCES-BASEL(2021)

引用 7|浏览4
暂无评分
摘要
Soil salinization, one of the most common causes of soil degradation, negatively affects plant growth, reproduction, and yield in plants. Saline conditions elicit some physiological changes to cope with the imposed osmotic and oxidative stresses. Inoculation of plants with some bacterial species that stimulate their growth, i.e., plant growth-promoting bacteria (PGPB), may help plants to counteract saline stress, thus improving the plant's fitness. This manuscript reports the effects of the inoculation of a salt-sensitive cultivar of Brassica napus (canola) with five different PGPB species (separately), i.e., Azospirillum brasilense, Arthrobacter globiformis, Burkholderia ambifaria, Herbaspirillum seropedicae, and Pseudomonas sp. on plant salt stress physiological responses. The seeds were sown in saline soil (8 dS/m) and inoculated with bacterial suspensions. Seedlings were grown to the phenological stage of rosetta, when morphological and physiological features were determined. In the presence of the above-mentioned PGPB, salt exposed canola plants grew better than non-inoculated controls. The water loss was reduced in inoculated plants under saline conditions, due to a low level of membrane damage and the enhanced synthesis of the osmolyte proline, the latter depending on the bacterial strain inoculated. The reduction in membrane damage was also due to the increased antioxidant activity (i.e., higher amount of phenolic compounds, enhanced superoxide dismutase, and ascorbate peroxidase activities) in salt-stressed and inoculated Brassica napus. Furthermore, the salt-stressed and inoculated plants did not show detrimental effects to their photosynthetic apparatus, i.e., higher efficiency of PSII and low energy dissipation by heat for photosynthesis were detected. The improvement of the response to salt stress provided by PGPB paves the way to further use of PGPB as inoculants of plants grown in saline soils.
更多
查看译文
关键词
Brassica napus, PGPB, salt stress, photosynthesis, oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要