Cell-type-specific Gene Expression And Transcriptional Networks Reveal Adamts2 As A Powerful Regulator Of Cardiac Homeostasis During Heart Failure

CIRCULATION RESEARCH(2021)

引用 0|浏览18
暂无评分
摘要
Background: Heart failure (HF) is a highly heterogeneous disorder characterized by the interactions of multiple genetic and environmental factors as well as the interaction of different cell types in the heart. Although reductionistic approaches have successfully identified many genes involved in HF, heritability studies suggest that many genes have resisted discovery through these approaches. By utilizing cell-type-specific gene expression paired with transcriptomic data from a large cohort of mice, we sought to identify important drivers of HF using a systems genetics approach. Methods and Results: Mice from 93 unique inbred lines of the Hybrid Mouse Diversity Panel were given 30 ug/g/day of isoproterenol for three weeks via osmotic minipump to induce heart failure. Transcriptomes were generated from these mice and the weighted Maximal Information Component Analysis (wMICA) algorithm was applied to generate transcriptomic gene networks. Cardiomyocytes and Fibroblasts were isolated from both control and isoproterenol-treated adult C57BL/6J hearts using a Langendorff apparatus (n=3 per sex/treatment) and transcriptomes were generated. Significantly differentially expressed genes were identified using DESEQ2 and used to query the wMICA-derived network, identifying the gene Adamts2 as a potential regulator of cardiac hypertrophy. Follow-up in vitro and in vivo work has demonstrated that Adamts2 knockdown significantly blunts the hypertrophic effect of isoproterenol on cardiomyocytes while simultaneously reducing fibroblast proliferation and increasing apoptosis as measured by TUNEL staining. Careful examination of the gene network reveals evidence of paracrine signaling between cardiomyocytes and fibroblasts and suggests a key trans-cell-type role of Adamts2 in the regulation of HF after catecholamine stimulation. Conclusion: Co-expression network algorithms combined with cell-type-specific transcriptomics identified Adamts2 as a driver of HF. Adamts2 plays an important role via paracrine signaling in the proliferative response of fibroblasts and the hypertrophic response of cardiomyocytes to catecholamines. Further mechanistic analysis of Adamts2 will further reveal its role in the progression of heart failure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要