Prediction of ambient-pressure superconductivity in ternary hydride PdCuHx

JOURNAL OF APPLIED PHYSICS(2022)

引用 10|浏览8
暂无评分
摘要
We present an ab initio study of the ternary hydride PdCuH x, a parent compound of the superconducting PdH, at different hydrogen content ( x = 1 , 2). We investigate its structural, electronic, dynamical, and superconducting properties, demonstrating that, at low hydrogen content, the system is not a superconductor above 1 K; however, the highly hydrogenated structure is a strongly coupled superconductor. We give a solid rationale for the unusual increase of the superconducting critical temperature in hydrogenated palladium when alloyed with noble metals (Cu, Ag, and Au), as observed in Stritzker's experiments in 1972 [B. Stritzker, Z. Phys. 268, 261-264 (1974)] but never investigated with modern experimental and theoretical techniques. We highlight the important role played by H-derived phonon modes at intermediate frequencies, dynamically stabilized by anharmonic effects, as they strongly couple with states at the Fermi level. We hope that the present results will stimulate additional experimental investigations of structural, electronic, and superconducting properties of hydrogenated palladium-noble metal alloys. Indeed, if confirmed, these compounds could be considered a novel class of superconducting hydrides, showing different coupling mechanisms, which can be exploited to engineer new ambient-pressure superconductors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要