Photothermal AFM-IR spectroscopy and imaging: Status, challenges, and trends

JOURNAL OF APPLIED PHYSICS(2022)

引用 47|浏览3
暂无评分
摘要
This article focuses on the atomic force microscopy-infrared (AFM-IR) technique and its recent technological developments. Based on the detection of the photothermal sample expansion signal, AFM-IR combines the high spatial resolution of atomic force microscopy with the chemical identification capability of infrared spectroscopy to achieve submicrometric physico-chemical analyses. Since the first publication in 2005, technological improvements have dramatically advanced the capabilities of AFM-IR in terms of spatial and spectral resolution, sensitivity, and fields of applications. The goal of this paper is to provide an overview of these developments and ongoing limitations. We summarize recent progress in AFM-IR implementations based on the major AFM contact, tapping, and peak force tapping modes. Additionally, three new trends are presented, namely, AFM-IR applied to mineral samples, in fluid and a novel, purely surface sensitive AFM-IR configuration, to probe top layers. These trends demonstrate the immense potential of the technique and offer a good insight into the scope of AFM-IR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要