Quantum Confinement in Aligned Zigzag "Pseudo-Ribbons" Embedded in Graphene on Ni(100)

ADVANCED FUNCTIONAL MATERIALS(2022)

引用 7|浏览15
暂无评分
摘要
Lateral quantum confinement is of great interest in tuning the electronic properties of graphene-based nanostructures, making them suitable for technological applications. In principle, these properties might be controlled through the edge topology: for example, zigzag nanoribbons are predicted to have spin-polarized edge states. The practical realization of these structures is of utmost importance in fully harnessing the electronic properties of graphene. Here, the formation of regular, 1.4 nm wide ribbon-like graphene structures with zigzag edges are reported, showing 1D electronic states. It is found that these "pseudo-ribbons" embedded in single-layer graphene supported on Ni(100) can spontaneously form upon carbon segregation underneath 1D graphene moire domains, extending hundreds of nanometers in length. On the basis of both microscopy/spectroscopy/diffraction experiments and theoretical simulations, it is shown that these structures, even though seamlessly incorporated in a matrix of strongly interacting graphene, exhibit electronic properties closely resembling those of zigzag nanoribbons.
更多
查看译文
关键词
1D electronic states, graphene, nickel, quantum confinement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要