Additive effect of bromides and chlorides on the performance of perovskite solar cells fabricated via sequential deposition

Journal of Power Sources(2021)

引用 4|浏览10
暂无评分
摘要
A two-step sequential deposition method has been applied to prepare the solar cells with two types of perovskites Cs0.15FA0.85Pb(I0.95Cl0.05)3 and Cs0.15FA0.85Pb(I0.95Br0.05)3. In order to obtain the perovskite layers, the different sources of bromine and chlorine atoms were used for synthesis. The performance and time stability of chloride-based photocells are worse in comparison to the bromide-based devices. It can be explained by the effect of an accumulation of Cl atoms at the interfaces between the chloride-based perovskites and the layer of PCBM. Such a process causes an increasing of interface recombination. Also, the bulk density of states and, consequently, the bulk recombination of charge carriers seem to be higher for the perovskite layers obtained with chlorine atoms. The two-step technique applied to create the bromide perovskites less influences the photocells performance as in the case of one-step deposition. We can explain this observation by an existence of nucleation sites in the inorganic layer which improve the growth of a perovskite material.
更多
查看译文
关键词
Sequential deposition,Perovskite solar cells
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要