Phase Portrait Trajectory of a Three Degree-of-Freedom Vehicular Dynamic Model

JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME(2022)

引用 0|浏览1
暂无评分
摘要
This article formulates a front-wheel-drive three degree-of-freedom (3DOF) four-wheel planar vehicle model with the Magic Formula tire model. The state variables' evolutions of the model, i.e., trajectories of the model under acceleration and deacceleration conditions, are analyzed. The process of evolution is divided into desirable and undesirable phases based on the response characteristics of the vehicle to the driver input during the process. The trajectories are categorized as unsaturated trajectories and saturated trajectories by the existence of saturated tires during these phases. The response of state variables to driver input under acceleration conditions during undesirable phases are zero or even opposite, while the response of undesirable phases under the deacceleration condition is partially positive. Besides, the existing yaw rate safety envelope is recalibrated by using a longitudinal and lateral tire force coupling model. A more accurate yaw rate safety envelope is obtained from the given driver input. Furthermore, a longitudinal speed safety envelope is proposed according to the relationships among slip angle, yaw rate, and longitudinal speed. These safety envelopes are determined by driver input, tire properties, and grip condition. After overlaying yaw rate and longitudinal speed safety envelopes in the state space, the feasibility of using the safety envelope as trajectory classification criteria is discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要