Innovative remote plasma source for atomic layer deposition for GaN devices

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A(2021)

引用 5|浏览6
暂无评分
摘要
High-quality dielectric films could enable GaN normally off high-electron-mobility transistors (HEMTs). Plasma atomic layer deposition (ALD) is known to allow for controlled high-quality thin-film deposition, and in order to not exceed energy and flux levels leading to device damage, the plasma used should preferably be remote for many applications. This article outlines ion energy flux distribution functions and flux levels for a new remote plasma ALD system, Oxford Instruments Atomfab (TM), which includes an innovative, RF-driven, remote plasma source. The source design is optimized for ALD for GaN HEMTs for substrates up to 200 mm in diameter and allows for Al2O3 ALD cycles of less than 1 s. Modest ion energies of < 50 eV and very low ion flux levels of < 10(13) cm(-2) s(-1) were found at low-damage conditions. The ion flux can be increased to the high 10(14) cm(-2) s(-1) range if desired for other applications. Using low-damage conditions, fast ALD saturation behavior and good uniformity were demonstrated for Al2O3. For films of 20 nm thickness, a breakdown voltage value of 8.9 MV/cm was obtained and the Al2O3 films were demonstrated to be suitable for GaN HEMT devices where the combination with plasma pretreatment and postdeposition anneals resulted in the best device parameters. (c) 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/6.0001318
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要