SIK2 Improving Mitochondrial Autophagy Restriction Induced by Cerebral Ischemia-Reperfusion in Rats

FRONTIERS IN PHARMACOLOGY(2022)

引用 3|浏览3
暂无评分
摘要
Previous studies have shown that Salt-induced kinase-2(SIK2) is involved in the regulation of various energy-metabolism-related reactions, and it also can regulate angiogenesis after cerebral ischemia-reperfusion. However, it is unclear whether SIK2 can regulate energy metabolism in cerebral ischemia-reperfusion injury. As mitochondria plays an important role in energy metabolism, whether SIK2 regulates energy metabolism through affecting mitochondrial changes is also worth to be explored. In this study, rats were treated with adeno-associated virus-SIK2-Green fluorescent protein (AAV-SIK2-GFP) for the overexpression of SIK2 before middle cerebral artery occlusion (MCAO). We found that SIK2 overexpression could alleviate the neuronal damage, reduce the area of cerebral infarction, and increase the adenosine triphosphate (ATP) content, which could promote the expression of phosphorylated-mammalian target of rapamycin-1 (p-mTORC1), hypoxia-inducible factor-1 alpha (HIF-1 alpha), phosphatase and tensin homologue-induced putative kinase 1 (PINK1) and E3 ubiquitinligating enzyme (Parkin). Transmission electron microscopy revealed that SIK2 overexpression enhanced mitochondrial autophagy. It is concluded that SIK2 can ameliorate neuronal injury and promote the energy metabolism by regulating the mTOR pathway during cerebral ischemia-reperfusion, and this process is related to mitochondrial autophagy.
更多
查看译文
关键词
SIK2, MCAO, energy metabolism, mitochondrial autophagy, cerebral ischemia-reperfusion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要