Functional brain activity constrained by structural connectivity reveals cohort-specific features for serum neurofilament light chain

Communications medicine(2022)

引用 2|浏览6
暂无评分
摘要
Background Neuro-axonal brain damage releases neurofilament light chain (NfL) proteins, which enter the blood. Serum NfL has recently emerged as a promising biomarker for grading axonal damage, monitoring treatment responses, and prognosis in neurological diseases. Importantly, serum NfL levels also increase with aging, and the interpretation of serum NfL levels in neurological diseases is incomplete due to lack of a reliable model for age-related variation in serum NfL levels in healthy subjects. Methods Graph signal processing (GSP) provides analytical tools, such as graph Fourier transform (GFT), to produce measures from functional dynamics of brain activity constrained by white matter anatomy. Here, we leveraged a set of features using GFT that quantified the coupling between blood oxygen level dependent signals and structural connectome to investigate their associations with serum NfL levels collected from healthy subjects and former athletes with history of concussions. Results Here we show that GSP feature from isthmus cingulate in the right hemisphere (r-iCg) is strongly linked with serum NfL in healthy controls. In contrast, GSP features from temporal lobe and lingual areas in the left hemisphere and posterior cingulate in the right hemisphere are the most associated with serum NfL in former athletes. Additional analysis reveals that the GSP feature from r-iCg is associated with behavioral and structural measures that predict aggressive behavior in healthy controls and former athletes. Conclusions Our results suggest that GSP-derived brain features may be included in models of baseline variance when evaluating NfL as a biomarker of neurological diseases and studying their impact on personality traits.
更多
查看译文
关键词
Biological techniques,Dynamical systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要