NUF2 Is a Potential Immunological and Prognostic Marker for Non-Small-Cell Lung Cancer

JOURNAL OF IMMUNOLOGY RESEARCH(2022)

引用 2|浏览0
暂无评分
摘要
Background. Globally, non-small-cell lung cancer (NSCLC) is one of the most prevalent tumors. Various studies have investigated its etiology, but the molecular mechanism of NSCLC has not been elucidated. Methods. The GSE19804, GSE118370, GSE19188, GSE27262, and GSE33532 microarray datasets were obtained from the Gene Expression Omnibus (GEO) database for the identification of genes involved in NSCLC development as well as progression. Then, the identified differentially expressed genes (DEGs) were subjected to functional enrichment analyses. The protein-protein interaction (PPI) network was built after which module analysis was conducted via the Search Tool for Retrieval of Interacting Genes/Proteins (STRING) and Cytoscape. There were 562 DEGs: 98 downregulated genes and 464 upregulated. These DEGs were established to be enriched in p53 signaling pathway, transendothelial leukocyte migration, cell adhesion molecules, contractions of vascular smooth muscles, coagulation and complement cascades, and axon guidance. Assessment of tumor immunity was performed to determine the roles of hub genes. Results. There were 562 dysregulated genes, while 12 genes were hub genes. NUF2 was established to be a candidate immunotherapeutic target with potential clinical implications. The 12 hub genes were highly enriched in the p53 signaling pathway, the cell cycle, progesterone-associated oocyte maturation, cellular senescence, and oocyte meiosis. Survival analysis showed that NUF2 is associated with NSCLC occurrence, invasion, and recurrence. Conclusion. The NUF2 gene discovered in this study helps us clarify the pathomechanisms of NSCLC occurrence as well as progression and provides a potential diagnostic and therapeutic target for NSCLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要