Effects of functional groups and side chains on assembly of "X"-shaped new aggregation-induced emission molecules.

Journal of colloid and interface science(2022)

引用 0|浏览4
暂无评分
摘要
The self-assembly properties of aggregation-induced emission molecules play important roles in electroluminescence devices and fluorescence sensors because noncovalent interactions in self-assembly structures would accelerate the excitation energy consumption. However, there are only few studies to explore their self-assembly properties on the interface and there is still a great need for further understanding self-assembled mechanisms from the viewpoint of molecular design. Here, we presented three X-shaped aggregation-induced emission molecules X1, X2 and X3, which decorated with different functional groups and alkyl side chains. The self-assembly structures were revealed by scanning tunneling microscopy technique in combination with density functional theory. Results showed that X-shaped molecules self-assembled into different structures, depending on their molecular structure, especially the functional groups. Furthermore, self-assembly structures could be regulated by adjusting solution concentration. In more detail, parallel with gradually increasing solution concentration, the molecules approached closer and molecule-molecule interactions were enhanced, finally resulting in new nanostructures. The self-assembly properties of three X-shaped aggregation-induced emission molecules on the liquid/solid interface would give a guidance for further exploring the aggregation state in three-dimensional space. Meanwhile, the two-dimensional nanostructures might show special properties, which could be used in fabricating next generation functional films.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要