Reversible Regulating the Substrate Specificity of Enzymes in Microgels by a Phase Transition in Polymer Networks

ACS MACRO LETTERS(2022)

引用 7|浏览6
暂无评分
摘要
Here, we report a distinct approach for regulating the substrate specificity of enzymes immobilized in microgels by a phase transition in polymer networks. The finding is demonstrated on glucose oxidase that is immobilized in thermoresponsive ing and enzymatic oxidation tests indicate that the broadened specificity appears at low temperatures, at which the gel matrix is in the relatively swollen state relative to its state at microgel synthesis temperature; upon heating to the relative higher temperatures, the gel matrix is not able to shrink further that offers a tight space in which the enzyme resides to retain high glucose specificity. It is proposed that polymer phase transition in the gel matrix mainly alter protein gates that control passage of substrates into active sites, making them open or close to a certain extent that enable reversible regulating the substrate specificity. The finding is also observed on bulk gels under a rational design, making it of potential interest in enzymatic biofuel cell applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要