Green Leaf Volatiles in the Atmosphere—Properties, Transformation, and Significance

Atmosphere(2021)

引用 5|浏览6
暂无评分
摘要
This review thoroughly covers the research on green leaf volatiles (GLV) in the context of atmospheric chemistry. It briefly takes on the GLV sources, in-plant synthesis, and emission inventory data. The discussion of properties includes GLV solubility in aqueous systems, Henry’s constants, partition coefficients, and UV spectra. The mechanisms of gas-phase reactions of GLV with OH, NO3, and Cl radicals, and O3 are explained and accompanied by a catalog of products identified experimentally. The rate constants of gas-phase reactions are collected in tables with brief descriptions of corresponding experiments. A similar presentation covers the aqueous-phase reactions of GLV. The review of multiphase and heterogeneous transformations of GLV covers the smog-chamber experiments, products identified therein, along with their yields and the yields of secondary organic aerosols (SOA) formed, if any. The components of ambient SOA linked to GLV are briefly presented. This review recognized GLV as atmospheric trace compounds that reside primarily in the gas phase but did not exclude their transformation in atmospheric waters. GLV have a proven potential to be a source of SOA with a global burden of 0.6 to 1 Tg yr−1 (estimated jointly for (Z)-hexen-1-ol, (Z)-3-hexenal, and 2-methyl-3-buten-2-ol), 0.03 Tg yr−1 from switch grass cultivation for biofuels, and 0.05 Tg yr−1 from grass mowing.
更多
查看译文
关键词
air quality, atmospheric chemistry, secondary organic aerosol, plant metabolites, emission inventory, rate constants, Henry's constants, UV spectra
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要