Extreme fast charging of batteries using thermal switching and self-heating

arxiv(2022)

引用 0|浏览7
暂无评分
摘要
The long charge time of electric vehicles compared with the refueling time of gasoline vehicles, has been a major barrier to the mass adoption of EVs. Currently, the charge time to 80% state of charge in electric vehicles such as Tesla with fast charging capabilities is >30 minutes. For a comparable recharging experience as gasoline vehicles, governments and automobile companies have set <15 min with 500 cycles as the goal for extreme fast charging (XFC) of electric vehicles. One of the biggest challenges to enable XFC for lithium-ion batteries (LIBs) is to avoid lithium plating. Although significant research is taking place to enable XFC, no promising technology/strategy has still emerged for mainstream commercial LIBs. Here, we propose a thermally modulated charging protocol (TMCP) by active thermal switching for XFC, i.e., retaining the battery heat during XFC with the switch OFF for boosting the kinetics to avoid lithium plating while dissipating the heat after XFC with the switch ON for reducing side reactions. Our proposed TMCP strategy enables XFC of commercial high-energy-density LIBs with charge time <15 min and >500 cycles while simultaneously beating other targets set by US Department of energy (discharge energy density > 180 Wh/kg and capacity loss < 4.5%). Further, we develop a thermal switch based on shape memory alloy and demonstrate the feasibility of integrating our TMCP in commercial battery thermal management system.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要