Revealing the nano-structures of low-dimensional germanium on Ag(1 1 0) using XPS and XPD

Applied Nanoscience(2022)

引用 1|浏览0
暂无评分
摘要
In this work, we present a structural investigation of sub-monolayer films of germanium on Ag(1 1 0) by means of photoelectron spectroscopy (XPS) and diffraction (XPD), as well as low-energy electron diffraction (LEED). Since the rising progress in the synthesis of various kinds of nanoribbons, also germanium nanoribbons (Ge-NR) have been synthesized on Ag(1 1 0), recently. Here, we focus on their structural evolution and found the formation of two different phases of germanium at coverages of 0.5 ML and 0.7 ML , differing fundamentally from predicted nanoribbon structures. By means of LEED measurements, we obtained evidence for germanium superstructures which are not aligned along the [1 1 0] -direction, as expected for nanoribbon growth. Using synchrotron-based high-resolution XPS and XPD experiments of the Ge 3d and Ag 3d core-levels, we resolved the local chemical and atomic order of the germanium films. Thus, the strong internal bonding of the buckled germanium film and a weak Van-der-Waals interaction between silver and germanium were discovered. Moreover, XPD-simulations delivered a detailed model of the structural arrangement of the preliminary nanoribbon phase, which also provided an approach to identify the origin of the two chemically shifted components in the Ge 3d signal by applying a component-wise decomposition of the XPD data.
更多
查看译文
关键词
Photoelectron spectroscopy,Photoelectron diffraction,Germanium,Interface analysis,Nanoribbon,low-dimensional materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要