Use of PiggyBac Transposon System Constructed Murine Breast Cancer Model For Reporter Gene Imaging And Characterization of Metastatic Tumor Cells

Research Square (Research Square)(2022)

引用 0|浏览6
暂无评分
摘要
The piggyBac transposon system is known to non-viral integrate exogenous genes to chromosomes of mammalian cells. For reporter gene imaging, this transposon system is believed to efficiently establish xenograft tumor model with low immunogenicity. Because tumor cells usually exhibit genomic instability, it is important to investigate if piggyBac mediated transduction of reporter genes would change tumor characteristics. In this study, reporter gene imaging mediated by the piggyBac transposon system was exploited to track the growth and dissemination of 4T1 triple-negative murine breast cancer cells in vivo, followed by ex vivo analysis of the metastatic cells expressing reporter genes. We demonstrated that several cell properties, including proliferation rate, invasion and migration rate, and mammosphere formation ability of 4T1 cells were not influenced by piggyBac transposon system. Further, we isolated the liver metastatic cells, named 4T1-3R_L cells for further analysis. Compared to parental 4T1 cells, 4T1-3R_L cells exhibited several cancer stem cells (CSC) related characteristics, including significant mammosphere formation ability, resistance to doxorubicin, high tumorigenicity potential in Balb/C mice and expression of CD44 CSC marker. We also found that 4T1-3R_L cells exhibited stronger migrated and invasive abilities, by wound healing assay and in vitro invasion assay, respectively. The cell adhesive ability of 4T1-3R_L cells was also lower than that of 4T1 cells. The microarray assay showed that several epithelial-mesenchymal transition (EMT) promoting markers, including vimentin, N-cadherin, Twist1, and Snail were up-regulated, and anti-EMT marker E-cadherin was down-regulated in 4T1-3R_L cells. Current data suggest that the piggyBac transposon system is a reliable and biocompatible tool to engineer cancer cells for tacking and characterizing tumor development in vivo and in vitro.
更多
查看译文
关键词
reporter gene imaging,tumor cells,breast cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要