Impact of 3D Cloud Structures on the Atmospheric Trace Gas Products from UV-VIS Sounders – Part II: impact on NO2 retrieval and mitigation strategies

ATMOSPHERIC MEASUREMENT TECHNIQUES(2021)

引用 2|浏览3
暂无评分
摘要
Abstract. Operational retrievals of tropospheric trace gases from space-borne spectrometers are based on one-dimensional radiative transfer models. To minimize cloud effects, trace gas retrievals generally implement Lambertian cloud models based on radiometric cloud fraction estimates and photon path length corrections. The latter relies on measurements of the oxygen collision pair (O2-O2) absorption at 477 nm or on the oxygen A-band around 760 nm. In reality however, the impact of clouds is much more complex, involving unresolved sub-pixel clouds, scattering of clouds in neighboring pixels and cloud shadow effects, such that unresolved three-dimensional effects due to clouds may introduce significant biases in trace gas retrievals. In order to quantify this impact, we study NO2 as a trace gas example, and apply standard retrieval methods including approximate cloud corrections to synthetic data generated by the state-of-the-art three-dimensional Monte Carlo radiative transfer model MYSTIC. A sensitivity study is performed for simulations including a box-cloud, and the dependency on various parameters is investigated. The most significant bias is found for cloud shadow effects under polluted conditions. Biases depend strongly on cloud shadow fraction, NO2 profile, cloud optical thickness, solar zenith angle, and surface albedo. Several approaches to correct NO2 retrievals under cloud shadow conditions are explored. We find that air mass factors calculated using fitted surface albedo or corrected using the O2-O2 slant column density can partly mitigate cloud shadow effects. However, these approaches are limited to cloud-free pixels affected by surrounding clouds. A parameterization approach is presented based on relationships derived from the sensitivity study. This allows identifying measurements for which the standard NO2 retrieval produces a significant bias, and therefore provides a way to improve the current data flagging approach.
更多
查看译文
关键词
atmospheric trace gas products,3d cloud structures,uv–vis sounders
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要