Enhance Trial: Effects of NAD3® on Hallmarks of Aging and Clinical Endpoints of Health in Middle Aged Adults: A Subset Analysis Focused on Blood Cell NAD+ Concentrations and Lipid Metabolism

Physiologia(2022)

引用 2|浏览0
暂无评分
摘要
Limited pre-clinical and clinical data suggest theacrine or theacrine-based supplements modulate biological processes associated with lipid metabolism and aging. Herein, we sought to examine if 12 weeks of daily supplementation with a theacrine-based supplement (termed NAD3®; 312 mg of combined Wasabia japonica freeze-dried rhizome standardized for isothicyantes, theacrine, and copper (I)niacin chelate) altered serum lipids as well as select nicotinamide adenine dinucleotide (NAD+)-associated metabolites in peripheral blood mononuclear cells (PBMCs). Twenty-eight participants (12 males, 16 females) were randomly assigned to receive either NAD3 (n = 13; age: 52 ± 7 years old, body mass index: 29.0 ± 5.0 kg/m2) or a cellulose placebo (n = 15; age: 51 ± 5 years old, body mass index: 28.3 ± 3.9 kg/m2). Blood samples were obtained in mornings following overnight fasts prior to supplementation (Pre) and following the 12-week intervention (Post). PBMCs were freshly isolated and prepared for targeted NAD+ metabolomics, and serum as well as whole blood was assayed for blood lipids and other safety markers through a commercial laboratory. Significant interactions (p < 0.05) were observed for total cholesterol, LDL cholesterol, and LDL: HDL ratio and post hoc analyses indicated these biomarkers significantly decreased with NAD3 supplementation (Pre-to-Post percent decreases were 11.1, 15.2, and −18.9%, respectively). A significant interaction was also observed for PBMC NAD+: NADH values, where levels trended downward from Pre to Post in the CTL group (p = 0.081) and values at Post were greater in NAD3 versus CTL (p = 0.023). No interactions were observed for systolic/diastolic blood pressure, body mass, or blood markers indicative of clinical safety. Although participant numbers were limited, these first-in-human data demonstrate a theacrine-based NAD3 supplement can favorably alter biomarkers of lipid metabolism and cellular NAD+ status. However, the latter data are limited to targeted NAD+ metabolites, and the effects of supplementation on other cellular metabolites or mechanisms related to the observed outcomes need to be further explored.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要