CeO2 nanoparticles improved cucumber salt tolerance is associated with its induced early stimulation on antioxidant system

Chemosphere(2022)

引用 25|浏览0
暂无评分
摘要
Salinity is a global issue limiting efficient agricultural production. Nano-enabled plant salt tolerance is a hot topic. However, the role of nanoparticles induced possible early stimulation on antioxidant system in its improved plant salt tolerance is still largely unknown. Here, poly (acrylic) acid coated nanoceria (cerium oxide nanoparticles) (PNC, 7.8 nm, −31 mV) with potent ROS (reactive oxygen species) scavenging ability are used. Compared with control, no significant difference of H2O2 and O2•─ content, MDA (malondialdehyde) content, relative electric conductivity, and Fv/Fm was found in leaves and/or roots of cucumber before onset of salinity stress, regardless of leaf or root application of PNC. While, before onset of salinity stress, compared with control, the activities of SOD (superoxide dismutase, up to 1.8 folds change), POD (peroxidase, up to 2.5 folds change) and CAT (catalase, up to 2.3 folds change), and the content of GSH (glutathione, up to 3.0 folds change) and ASA (ascorbic acid, up to 2.4 folds change) in leaves and roots of cucumber with PNC leaf spray or root application were significantly increased. RNA seq analysis further confirmed that PNC foliar spray upregulates more genes in leaves over roots than the root application. These results showed that foliar sprayed PNC have stronger early stimulation effect on antioxidant system than the root applied one and leaf are more sensitive to PNC stimulation than root. After salt stress, cucumber plants with foliar sprayed PNC showed better improvement in salt tolerance than the root applied one. Also, plants with foliar sprayed PNC showed significant higher whole plant cerium content than the root applied one after salt stress. In summary, we showed that foliar spray of nanoceria is more optimal than root application in terms of improving cucumber salt tolerance, and this improvement is associated with better stimulation on antioxidant system in plants.
更多
查看译文
关键词
Confocal imaging,Cucumber salt tolerance,Ion content analysis,Nanoceria,Reactive oxygen species,RNA seq
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要