Deformation and acceleration of water droplet in continuous airflow

PHYSICS OF FLUIDS(2022)

引用 2|浏览14
暂无评分
摘要
The present work investigates the deformation and acceleration of water droplets in continuous airflow. The numerical approach is based on the level set method for capturing the liquid-gas interface and the projection method for solving the three-dimensional incompressible Navier-Stokes equations. The effects of the incoming airflow velocity (10-100 m/s), initial droplet diameter (20-100 mu m), and supercooling on water droplet deformation are investigated. The results indicate that the droplet enters the breakup regime at a critical Weber number of 10, which agrees with the published literature. A dimensionless deformation factor L is defined to describe the droplet deformation. The results confirm that the extreme values of L increase with increasing Weber number during droplet movement. Two models are proposed to predict the minimum deformation factor and the corresponding dimensionless time. The effect of supercooling on water droplet deformation is analyzed, and it is found that the deformation factor of supercooled droplets is lower than that of room-temperature droplets, while supercooled water droplets exhibit greater acceleration. Furthermore, based on the numerical results, a model governed by the Weber number and the Ohnesorge number is proposed for predicting droplet acceleration. Published under an exclusive license by AIP Publishing
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要