X-ray nanodiffraction imaging reveals distinct nanoscopic dynamics of an ultrafast phase transition

PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA(2022)

引用 3|浏览17
暂无评分
摘要
Ultrafast first-order phase transitions exhibit distinct transition pathways and dynamical properties that are not accessible during quasi-equilibrium transitions. Phenomena arising at the ultrafast timescale are important for understanding the transition mechanisms and in applications using the fast switching of electronic properties or magnetism. These transitions are accompanied by nanoscale structural dynamics that have been challenging to explore by optical or electronic transport probes. Here, X-ray nanodiffraction imaging shows that the nanoscale structural dynamics arising in ultrafast phase transitions differ dramatically from the transitions under slowly varying parameters. The solid-solid phase transitions in a FeRh thin film involve concurrent structural and magnetic changes and can be sensitively probed by monitoring their diffraction signatures following femtosecond optical excitation. Time-dependent nanodiffraction maps with 100-ps temporal and 25-nm spatial resolutions reveal that the preexisting nanoscale variation in phase composition results in spatially inhomogeneous changes of phase fraction after ultrafast optical excitation. The spatial inhomogeneity leads to nanoscale temperature variations and subsequent in-plane heat transport, which are responsible for spatially distinct relaxation pathways on nanometer length scales. The spatial gradients of the phase composition and elastic strain increase upon excitation rather than exhibiting the decrease previously reported in quasi-equilibrium transformations. Long-range elastic interactions thus do not play significant roles in the ultrafast phase transition. These microscopic insights into first-order phase transitions provide routes to manipulate nanoscopic phases in functional materials on ultrafast time scales by engineering initial nanoscale phase distributions.
更多
查看译文
关键词
nanoscopic imaging, structural dynamics, magnetic film, phase transition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要