Photophysiological response of Symbiodiniaceae single cells to temperature stress

The ISME Journal(2022)

引用 4|浏览7
暂无评分
摘要
Photosynthetic dinoflagellates in the family Symbiodiniaceae engage in symbiosis with scleractinian corals. As coral ‘bleaching’ is partly governed by the thermal sensitivity of different Symbiodiniaceae lineages, numerous studies have investigated their temperature sensitivity. However, the systematic identification of single-cells with increased temperature resistance among these dinoflagellates has remained inaccessible, mostly due to a lack of technologies operating at the microscale. Here, we employed a unique combination of microfluidics, miniaturized temperature control, and chlorophyll fluorometry to characterize the single-cell heterogeneity among five representative species within the Symbiodiniaceae family under temperature stress. We monitored single-cell maximum quantum yields ( F v / F m ) of photosystem (PS) II under increasing temperature stress (22‒39 °C, + 1 °C every 15 min), and detected a significant F v / F m reduction at lineage-specific temperatures ranging from 28 °C to 34 °C alongside a 40- to 180- fold increase in intraspecific heterogeneity under elevated temperatures (>31 °C). We discovered that the initial F v / F m of a cell could predict the same cell’s ability to perform PSII photochemistry under moderate temperature stress (<32 °C), suggesting its use as a proxy for measuring the thermal sensitivity among Symbiodiniaceae. In combination, our study highlights the heterogeneous thermal sensitivity among photosynthetic Symbiodiniaceae and adds critical resolution to our understanding of temperature-induced coral bleaching.
更多
查看译文
关键词
Environmental microbiology,Microbial ecology,Life Sciences,general,Microbiology,Ecology,Evolutionary Biology,Microbial Genetics and Genomics,Microbial Ecology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要