Subcritical epidemics on random graphs

arxiv(2022)

引用 0|浏览13
暂无评分
摘要
We study the contact process on random graphs with low infection rate $\lambda$. For random $d$-regular graphs, it is known that the survival time is $O(\log n)$ below the critical $\lambda_c$. By contrast, on the Erd\H{o}s-R\'enyi random graphs $\mathcal G(n,d/n)$, rare high-degree vertices result in much longer survival times. We show that the survival time is governed by high-density local configurations. In particular, we show that there is a long string of high-degree vertices on which the infection lasts for time $n^{\lambda^{2+o(1)}}$. To establish a matching upper bound, we introduce a modified version of the contact process which ignores infections that do not lead to further infections and allows for a shaper recursive analysis on branching process trees, the local-weak limit of the graph. Our methods, moreover, generalize to random graphs with given degree distributions that have exponential moments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要