Reduced-Order Extended Kalman Filter for Deformable Tissue Simulation

Journal of the Mechanics and Physics of Solids(2022)

引用 10|浏览4
暂无评分
摘要
Modelling of soft tissue deformation is a key issue in surgical simulation. Despite extensive research studies on this issue, accurate modelling of soft tissue deformation in run time still remains challenging. This paper proposes a new reduced-order nonlinear Kalman filter to emulate nonlinear behaviors of biological deformable tissues. This approach defines the deformable modelling problem as a reduced-order filtering problem to accurately calculate soft tissue deformation in real time. Soft tissue deformation is discretized in space using nonlinear finite element method based on hyperelasticity and further formulated as a nonlinear state-space equation for filtering estimation. Subsequently, the order of this nonlinear state-space equation is reduced using proper orthogonal decomposition to reduce the computational cost. Upon this reduced-order state-space equation, an extended Kalman filter is constructed to online calculate nonlinear behaviors of tissue physical deformation. Simulation results and comparison analysis prove the effectiveness of the suggested method for accurate simulation of tissue physical deformation in real time.
更多
查看译文
关键词
Tissue mechanical deformation,Finite element method,Model order reduction,Extended Kalman filter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要