Automatic analytical approach for the determination of 12 illicit drugs and nicotine metabolites in wastewater using on-line SPE-UHPLC-MS/MS

Journal of Pharmaceutical Analysis(2021)

引用 0|浏览0
暂无评分
摘要
In this study, we developed a novel on-line solid phase extraction (SPE)-ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS)-based analytical method for simultaneously quantifying 12 illicit drugs and metabolites (methamphetamine, amphetamine, morphine, codeine, 6-monoacetylmorphine, benzoylecgonine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine, cocaine, ketamine, norketamine, and methcathinone) and cotinine (COT) in wastewater samples. The analysis was performed by loading 2 mL of the sample onto an Oasis hydrophilic-lipophilic balance cartridge and using a cleanup step (5% methanol) to eliminate interference with a total run time of 13 min. The isotope-labeled internal standard method was used to quantify the target substances and correct for unavoidable losses and matrix effects during the on-line SPE process. Typical analytical characteristics used for method validation were sensitivity, linearity, precision, repeatability, recovery, and matrix effects. The limit of detection (LOD) and limit of quantification (LOQ) of each target were set at 0.20 ng/L and 0.50 ng/L, respectively. The linearity was between 0.5 ng/L and 250 ng/L, except for that of COT. The intra- and inter-day precisions were <10.45% and 25.64%, respectively, and the relative recovery ranged from 83.74% to 162.26%. The method was used to analyze various wastewater samples from 33 cities in China, and the results were compared with the experimental results of identical samples analyzed using off-line SPE. The difference rate was between 19.91% and −20.44%, and the error range could be considered acceptable. These findings showed that on-line SPE is a suitable alternative to off-line SPE for the analysis of illicit drugs in samples.
更多
查看译文
关键词
Illicit drugs and metabolites,Wastewater analysis,On-line solid phase extraction,Ultra-high-performance liquid chromatography,Mass spectrometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要