Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes

APPLIED AND ENVIRONMENTAL MICROBIOLOGY(2022)

引用 3|浏览2
暂无评分
摘要
NRFeOx microorganisms are globally distributed in various types of environments and play a vital role in iron transformation and nitrate and heavy metal removal. However, most known NRFeOx microorganisms were isolated from freshwater and marine environments, while their identity and activity under hypersaline conditions remain unknown. Nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms contribute to nitrogen, carbon, and iron cycling in freshwater and marine ecosystems. However, NRFeOx microorganisms have not been investigated in hypersaline lakes, and their identity, as well as their activity in response to salinity, is unknown. In this study, we combined cultivation-based most probable number (MPN) counts with Illumina MiSeq sequencing to analyze the abundance and community compositions of NRFeOx microorganisms enriched from five lake sediments with different salinities (ranging from 0.67 g/L to 346 g/L). MPN results showed that the abundance of NRFeOx microorganisms significantly (P < 0.05) decreased with increasing lake salinity, from 7.55 x 10(3) to 8.09 cells/g dry sediment. The community composition of the NRFeOx enrichment cultures obtained from the MPNs differed distinctly among the five lakes and clustered with lake salinity. Two stable enrichment cultures, named FeN-EHL and FeN-CKL, were obtained from microcosm incubations of sediment from freshwater Lake Erhai and hypersaline Lake Chaka. The culture FeN-EHL was dominated by genus Gallionella (68.4%), while the culture FeN-CKL was dominated by genus Marinobacter (71.2%), with the former growing autotrophically and the latter requiring an additional organic substrate (acetate) and Fe(II) oxidation, caused to a large extent by chemodenitrification [reaction of nitrite with Fe(II)]. Short-range ordered Fe(III) (oxyhydr)oxides were the product of Fe(II) oxidation, and the cells were partially attached to or encrusted by the formed iron minerals in both cultures. In summary, different types of interactions between Fe(II) and nitrate-reducing bacteria may exist in freshwater and hypersaline lakes, i.e., autotrophic NRFeOx and chemodenitrification in freshwater and hypersaline environments, respectively. IMPORTANCE NRFeOx microorganisms are globally distributed in various types of environments and play a vital role in iron transformation and nitrate and heavy metal removal. However, most known NRFeOx microorganisms were isolated from freshwater and marine environments, while their identity and activity under hypersaline conditions remain unknown. Here, we demonstrated that salinity may affect the abundance, identity, and nutrition modes of NRFeOx microorganisms. Autotrophy was only detectable in a freshwater lake but not in the saline lake investigated. We enriched a mixotrophic culture capable of nitrate-reducing Fe(II) oxidation from hypersaline lake sediments. However, Fe(II) oxidation was probably caused by abiotic nitrite reduction (chemodenitrification) rather than by a biologically mediated process. Consequently, our study suggests that in hypersaline environments, Fe(II) oxidation is largely caused by chemodentrification initiated by nitrite formation by chemoheterotrophic bacteria, and additional experiments are needed to demonstrate whether or to what extent Fe(II) is enzymatically oxidized.
更多
查看译文
关键词
salinity, NRFeOx, hypersaline lake, community compositions, iron oxidation, nitrate reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要