Multimodal Imaging and Synergetic Chemodynamic/Photodynamic Therapy Achieved Using an NaGdF4,Yb,Er@ NaGdF4,Yb,Tm@NaYF4@Fe-MOFs Nanocomposite

CHEMISTRY-AN ASIAN JOURNAL(2022)

引用 3|浏览0
暂无评分
摘要
Here, NaGdF4,Yb,Er@NaGdF4,Yb,Tm@NaYF4 core@shell@shell three-layer structure of upconversion nanoparticles (UCNPs) coated with Fe-Tetrakis (4-carboxyphenyl) porphine (TCPP) metal-organic frameworks (Fe-MOFs) nanocomposite (UCNPs@MOFs) was designed and constructed for multimodal imaging and synergetic chemodynamic therapy (CDT)/photodynamic therapy (PDT) of tumors. The UCNPs@MOFs were successfully applied for tumor cells imaging in vitro and in vivo in near-infrared (NIR) region. The doped Gd was used as contrast agent for the magnetic resonance imaging (MRI) of mouse tumors. The luminescence in the UV-vis region was absorbed by the Fe-MOFs to produce singlet oxygen (O-1(2)) for PDT. The Fe3+ doped in the MOFs can catalyze H2O2 to produce oxygen and hydroxyl radical (.OH). Hydroxyl radical is used in CDT and cooperates with the O-1(2) of PDT. Based on the CDT/PDT synergistic effects, the UCNPs@MOFs nanocomposite had obviously enhanced tumor inhibitory efficiency in vivo. These results described that the asprared UCNPs@MOFs nanocomposite have great potential in the effective multimodal imaging and treatment of tumors.
更多
查看译文
关键词
upconversion nanoparticles, metal-organic frameworks, multimodal imaging, chemodynamic therapy, photodynamic therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要