A HIF-1 signature dominates the attenuation in the human skeletal muscle transcriptional response to high-intensity interval training

JOURNAL OF APPLIED PHYSIOLOGY(2022)

引用 6|浏览6
暂无评分
摘要
High-intensity interval training (HIIT) generates profound metabolic adaptations in skeletal muscle. These responses mirror performance improvements but follow a nonlinear pattern comprised of an initial fast phase followed by a gradual plateau effect. The complete time-dependent molecular sequelae that regulates this plateau effect remains unknown. We hypothesize that the plateau effect during HIIT is restricted to specific pathways with communal upstream transcriptional regulation. To investigate this, 11 healthy men performed nine sessions of HUT [10 x 4 min of cycling at 91% of maximal heart rate (HRmax)] over a 3-wk period. Before and 3 h after the 1st and 9th exercise bout, skeletal muscle biopsies were obtained, and RNA sequencing was performed. Almost 2,000 genes across 84 pathways were differentially expressed in response to a single HIIT session. The overall transcriptional response to acute exercise was strikingly similar at 3 wk, 83% (n = 1,650) of the genes regulated after the 1st bout of exercise were similarly regulated by the 9th bout, albeit with a smaller effect size, and the response attenuated to on average 70% of the 1st bout. The attenuation differed substantially between pathways and was especially pronounced for glycolysis and cellular adhesion compared to, e.g., MAPK and vascular endothelial growth factor (VEGF)-A signaling. The attenuation was driven by a combination of changes in steady-state expression and specific transcriptional regulation. Given that the exercise intensity was progressively increased, and the attenuation was pathway-specific, we suggest that moderation of muscular adaptation after a period of training stems from targeted regulation rather than a diminished exercise stimulus. NEW & NOTEWORTHY This is the first study to address the phenomena of attenuation of the acute exercise response on a global genomic scale with a focus on underlying regulatory machinery and it is, to the best of our knowledge, the first study conducted in humans was exercise-induced regulation of different canonical pathways and transcription factors are contrasted with regards to attenuation after a period with regular exercise training. These results provide evidence for a pathway-specific regulated augmentation of the response to acute exercise over time that tracks with the successive adaptation on the systemic level.
更多
查看译文
关键词
exercise, high-intensity interval training, human, skeletal muscle, transcriptome
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要