Abnormal neural adaptation consequent to combined exposure to jet fuel and noise

JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH-PART A-CURRENT ISSUES(2022)

引用 1|浏览0
暂无评分
摘要
A fundamental property of first-order sensory neurons is the ability to alter their response properties as a function of change in the statistical parameters of an input signal. Such neural adaptation shapes the performance features of contiguous neural circuits that ultimately drive sensory discrimination. The current study focused on whether combined exposure to jet fuel and noise might alter the capacity of the auditory nerve to adapt to stimulus presentation speed. Young hooded Long-Evans 4-5 weeks old male rats were grouped and used in the current experiment. One group was exposed via inhalation to 1000 mg/m(3) of jet propulsion fuel for 6 hr per day, 5 days per week for 4 weeks. Another group was exposed to a 5.5-11.3 kHz band-pass noise at 85 dB SPL for 6 hr per day, 5 days per week for 4 weeks. An additional group was simultaneously exposed to both jet fuel and noise. An age-matched group served as control and was not exposed to either jet fuel or noise. After experimental exposures, animals were given 4 weeks to recover and then assessed for neural adaptation. Both slow and fast rectangular voltage pulses were employed to elicit neuroelectric activity from the animals. Data demonstrated significant neural adaptation (1.46 mu V shift) among controls, where neural activity decreased as the stimulus presentation speed rose from 10 to 100 per sec. This effect might also be observed in animals in the jet fuel treated and rats in the noise-exposed group. However, animals who were simultaneously exposed to both jet fuel and noise failed to exhibit neural adaptation. This abnormality appeared to be masked because independent slow and fast stimuli produced similar neural activity between controls and rats exposed to both jet fuel and noise. Therefore, neural adaptation assays may further be developed to unmask silent neurotoxicity consequent to physiochemical exposures.
更多
查看译文
关键词
Neuropathy, Synaptopathy, Ototoxicity, Noise, Hidden Hearing loss, Mixtures, Hearing, Auditory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要