Terahertz waveform synthesis from integrated lithium niobate circuits

arxiv(2022)

引用 5|浏览3
暂无评分
摘要
Bridging the "terahertz (THz) gap" relies upon synthesizing arbitrary waveforms in the THz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate (TFLN) circuits provide a versatile solution for such waveform synthesis through combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted THz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We provide a toolbox of basic blocks that produce broadband emission up to 680 GHz with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.
更多
查看译文
关键词
terahertz,lithium,synthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要