Collective dynamics and rheology of confined phoretic suspensions

JOURNAL OF FLUID MECHANICS(2022)

引用 2|浏览0
暂无评分
摘要
Similarly to their biological counterparts, suspensions of chemically active autophoretic swimmers exhibit a non-trivial dynamics involving self-organisation processes as a result of inter-particle interactions. Using a kinetic model for a dilute suspension of autochemotactic Janus particles, we analyse the effect of a confined pressure-driven flow on these collective behaviours and the impact of chemotactic aggregation on the effective viscosity of the active fluid. Four dynamic regimes are identified when increasing the strength of the imposed pressure-driven flow, each associated with a different collective behaviour resulting from the competition of flow- and chemically induced reorientation of the swimmers together with the constraints of confinement. Interestingly, we observe that the effect of the pusher (respectively puller) hydrodynamic signature, which is known to reduce (respectively increase) the effective viscosity of a sheared suspension, is inverted upon the emergence of autochemotactic aggregation. Our results provide new insights into the role of the collective dynamics in complex environments, which are relevant to synthetic as well as biological systems.
更多
查看译文
关键词
collective behaviour, active matter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要