An efficient biosynthesis of palladium nanoparticles using Bael gum and evaluation of their catalytic and antibacterial activity

International Journal of Biological Macromolecules(2022)

引用 11|浏览1
暂无评分
摘要
We report a facile microwave-assisted synthesis of palladium nanoparticles (PdNPs) using Bael gum (BG) and it's carboxymethylated (CMBG) derivative. The prepared nanoparticles (BG@PdNPs and CMBG@PdNPs) were evaluated for antibacterial and catalytic activity in the reduction of organic dye pollutants. The developed synthetic method is simple, low cost and eco-friendly, wherein the process requires no additional reducing or capping agents. The CMBG was prepared via etherification reaction between BG and monochloroacetic acid using Williamson synthesis method. The PdNPs were synthesized using BG and CMBG as stabilizers and reducing agents. The PdNPs were found to be well dispersed spherical, with the crystalline size of the order of 7–21 nm. The results showed that the CMBG@PdNPs were smaller in size (7 ± 2 nm) than those capped with BG@PdNPs (10 ± 2 nm). The catalytic ability of CMBG@PdNPs was examined for the reduction of Methyl Orange (MO), Methyl Red(MR), and Rhodamine-B (RhB) in the presence of NaBH4. The results showed that CMBG@PdNPs exhibited a higher catalytic ability than BG@PdNPs. Moreover, it was found that CMBG@PdNPs served several times as a retrievable and reusable catalyst which is stable even after six cycles of reaction. The CMBG@PdNPs and BG@PdNPs showed excellent antibacterial activity. The results indicate that CMBG@PdNPs have greater potential application as a catalyst in the reduction of organic pollutants and antibacterial activity.
更多
查看译文
关键词
Biosynthesis of PdNPs,Bael gum,Carboxymethylated Bael gum,Catalytic properties,And antibacterial activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要