Functional differentiation and complementation of alkaline phosphatases and choreography of DOP scavenging in a marine diatom

MOLECULAR ECOLOGY(2022)

引用 8|浏览9
暂无评分
摘要
Facing phosphate deficiency, phytoplankton use alkaline phosphatase (AP) to scavenge dissolved organophosphate (DOP). AP is a multitype (e.g., PhoA, PhoD) family of hydrolases and is known as a promiscuous enzyme with broad DOP substrate compatibility. Yet, whether the multiple types differentiate on substrates and collaborate to provide physiological flexibility remain elusive. Here we identify PhoA and PhoDs and document the functional differentiation between PhoA and a PhoD (PhoD_45757) in Phaeodactylum tricornutum. CRISPR/Cas9-based mutations and physiological analyses reveal that (1) PhoA is a secreted enzyme and contributes the majority of total AP activity whereas PhoD_45757 is intracellular and contributes a minor fraction of the total AP activity, (2) AP gene expression compensates for each other after one is disrupted, (3) the DOP -> PhoA -> phosphate_uptake and the DOP_uptake -> PhoD -> phosphate pathways function interchangeably for some DOP substrates. These findings shed light on the underpinning of AP's multiformity and have important implications in phytoplankton phosphorus-nutrient niche differentiation, physiological plasticity, and competitive strategy.
更多
查看译文
关键词
alkaline phosphatase, dissolved organic phosphorus utilization, Phaeodactylum tricornutum, phosphorus nutrition, Phytoplankton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要