Pump-free microfluidic chip based laryngeal squamous cell carcinoma-related microRNAs detection through the combination of surface-enhanced Raman scattering techniques and catalytic hairpin assembly amplification

Talanta(2022)

引用 7|浏览1
暂无评分
摘要
MicroRNA (miRNA), as one of the ideal target biomarker analytes, plays an essential role in biological processes; thus, the development of rapidly sensitive detection methods is imperative. Herein, we proposed a pump-free surface-enhanced Raman scatting (SERS) microfluidic chip for the rapid and ultrasensitive detection of miR-106b and miR-196b, laryngeal squamous cell carcinoma (LSCC)-related miRNAs. Ag–Au core-shell nanorods (Ag-AuNRs) were applied to prepare SERS tags by modifying Raman reporters and hairpin DNAs. The capture probes were synthesized by labeling hairpin DNAs onto the magnetic beads (MBs) surface. In the presence of targets, the catalytic hairpin assembly (CHA) reactions between SERS tags and capture probes could be triggered, causing the aggregation of Ag-AuNRs. The tiny magnets installed under the rectangular chamber could magnetically gather the CHA products, leading to the further aggregation of Ag-AuNRs. Thus, this strategy could achieve the double aggregation of Ag-AuNRs, resulting in the significant amplification of the SERS signal. The proposed strategy achieved simultaneous and sensitive detection of miR-106b and miR-196b, with limits of detection low to aM level. The whole detection process could be completed within 5 min. Moreover, this microfluidic chip exhibited excellent reproducibility, stability, and specificity. The high accuracy of this SERS microfluidic chip was proved by practical analysis in LSCC patients’ serum. The results demonstrated that SERS could be a promising alternative clinical diagnosis tool and exhibited potential application for the dynamic monitoring of cancer staging.
更多
查看译文
关键词
miRNA,Microfluidic chip,Catalytic hairpin assembly,Surface-enhanced Raman scattering,Laryngeal squamous cell carcinoma
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要