Cyclosporine A regulates PMN-MDSCs viability and function through MPTP in acute GVHD: Old medication, new target.

Xiaoqing Li,Delin Kong, Qiru Yu, Xiaohui Si,Lin Yang, Xiangjun Zeng,Yixue Li, Jimin Shi,Pengxu Qian, He Huang,Yu Lin

Transplantation and cellular therapy(2022)

引用 2|浏览7
暂无评分
摘要
Myeloid-derived suppressor cells (MDSCs), a population of myeloid lineage cells with immunosuppressive capacity, can mitigate acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). We previously found that the immunosuppressive function of polymorphonuclear population (PMN-MDSCs) was impaired in aGVHD milieu. The aim of this study was to explore the intrinsic mechanism regulating the fate and function of donor-derived PMN-MDSCs during allo-HSCT. We firstly found that mitochondrial permeability transition pore (MPTP) opened in the PMN-MDSCs in response to the intense inflammatory environment of aGVHD, which induced mitochondrial damage, oxidative stress, and apoptosis of PMN-MDSCs. Inhibiting MPTP opening by a traditional immunosuppressant, cyclosporine A (CsA), could restore the immunosuppressive function and viability of PMN-MDSCs in vitro and in vivo, which reveals a new mechanism of CsA application.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要