Deformed in-medium similarity renormalization group

PHYSICAL REVIEW C(2022)

引用 6|浏览19
暂无评分
摘要
In the m-scheme Hartree-Fock (HF) basis, we have developed an ab initio deformed single-reference in-medium similarity renormalization group (IMSRG) approach for open-shell nuclei. A deformed wave function may be more efficient in describing the deformed nucleus. The broken rotational symmetry can be restored using the angular momentum projection. However, a full angular momentum projection at the IMSRG level is still a challenge in both theory itself and computation. The angular momentum restoration mainly recaptures the static correlations, and in the present work we estimate the angular momentum projection effect by projecting the HF state as a leading-order approximation. As a test ground, we have calculated the deformed Be-8,Be-10 isotopes with the optimized chiral interaction NNLOopt. The results are benchmarked with the no-core shell model and valence-space IMSRG calculations. Then we systematically investigate the ground-state energies and charge radii of even-even nuclei from light beryllium to medium-mass magnesium isotopes. The calculated energies are extrapolated to infinite basis space by an exponential form, and compared with extrapolated valence-space IMSRG results and experimental data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要