Leukemia-associated transcription factor mllt3 is important for primitive erythroid development in zebrafish embryogenesis

DEVELOPMENTAL DYNAMICS(2022)

引用 1|浏览1
暂无评分
摘要
Background MLLT3 (AF9) is a nuclear transcription factor crucial for hematopoietic stem cell and progenitor cell maintenance, but its role during embryonic hematopoiesis remains uncertain. Here, we examine the role of mllt3 in developmental hematopoiesis during embryogenesis using zebrafish. Results Cloning, sequencing, phylogenetic, and synteny analyses showed high evolutionary conservation between important functional domains of the zebrafish orthologue of mllt3 and MLLT3 in humans. Quantitative reverse transcription-PCR and in situ hybridization analyses revealed that mllt3 is maternally supplied and zygotically expressed throughout embryonic development, and that expression is highest between 10 and 24 hours post-fertilization (hpf) coincident with enrichment in the intermediate cell mass (ICM) and posterior blood island, which are the sites of the primitive and transient definitive hematopoiesis in zebrafish, respectively. Further, we found co-expression of mllt3 with the early hematopoietic progenitor markers tal1, gata2, and gata1a in the posterior ICM. By investigating zebrafish hematopoietic mutants, we discovered that mllt3 is involved in erythroid precursor formation. By 48-72 hpf, mllt3 expression proved to be restricted to non-hematopoietic tissues including head structures, pronephric tubules, and liver primordium. Conclusions These findings establish a link between mllt3 and primitive erythropoiesis and provide the basis for future functional investigations.
更多
查看译文
关键词
gene expression, intermediate cell mass, mutants, primitive hematopoiesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要