Influence of Umbelliferone on the Anticonvulsant and Neuroprotective Activity of Selected Antiepileptic Drugs: An In Vivo and In Vitro Study

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2022)

引用 9|浏览15
暂无评分
摘要
Umbelliferone (7-hydroxycoumarin; UMB) is a coumarin with many biological properties, including antiepileptic activity. This study evaluated the effect of UMB on the ability of classical and novel antiepileptic drugs (e.g., lacosamide (LCM), levetiracetam (LEV), phenobarbital (PB) and valproate (VPA)) to prevent seizures evoked by the 6-Hz corneal-stimulation-induced seizure model. The study also evaluated the influence of this coumarin on the neuroprotective properties of these drugs in two in vitro models of neurodegeneration, including trophic stress and excitotoxicity. The results indicate that UMB (100 mg/kg, i.p.) significantly enhanced the anticonvulsant action of PB (p < 0.01) and VPA (p < 0.05), but not that of LCM orLEV, in the 6-Hz test. Whether alone or in combination with other anticonvulsant drugs (at their ED50 values from the 6-Hz test), UMB (100 mg/kg) did not affect motor coordination; skeletal muscular strength and long-term memory, as determined in the chimney; grip strength; or passive avoidance tests, respectively. Pharmacokinetic characterization revealed that UMB had no impact on total brain concentrations of PB or VPA in mice. The in vitro study indicated that UMB has neuroprotective properties. Administration of UMB (1 mu g/mL), together with antiepileptic drugs, mitigated their negative impact on neuronal viability. Under trophic stress (serum deprivation) conditions, UMB enhanced the neurotrophic abilities of all the drugs used. Moreover, this coumarin statistically enhanced the neuroprotective effects of PB (p < 0.05) and VPA (p < 0.001) in the excitotoxicity model of neurodegeneration. The obtained results clearly indicate a positive effect of UMB on the anticonvulsant and neuroprotective properties of the selected drugs.
更多
查看译文
关键词
umbelliferone, epilepsy, psychomotor seizures, drug interactions, neuroprotection, trophic stress, excitotoxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要