NiO-Ba0.95Ca0.05Ce0.9Y0.1O3-delta as a Modified Anode Material Fabricated by the Tape Casting Method

MATERIALS(2022)

引用 0|浏览10
暂无评分
摘要
The development of new chemically resistant anodes for protonic ceramic fuel cells (PCFCs) is urgently required to avoid the costly deep hydrogen purification method. Ba0.95Ca0.05Ce0.9Y0.1O3-delta (5CBCY), which is more chemically resistant than BaCaCe0.9Y0.1O3-delta, was here tested as a component of a composite NiO-5CBCY anode material. A preparation slurry comprising 5CBCY(,) NiO, graphite, and an organic medium was tape cast, sintered and subjected to thermal treatment in 10 vol.% H-2 in Ar at 700 degrees C. Differential thermal analysis, thermogravimetry, quadrupole mass spectrometry, X-ray diffraction analysis, scanning electron microscopy, the AC four-probe method and electrochemical impedance spectroscopy were used for the investigation. The electrical conductivity of the Ni-5CBCY in H-2-Ar at 700 degrees C was 1.1 S/cm. In the same gas atmosphere but with an additional 5 vol.% CO2, it was slightly lower, at 0.8 S/cm. The Ni-5CBCY cermet exhibited repeatable electrical conductivity values during Ni-to-NiO oxidation cycles and NiO-to-Ni reduction in the 5CBCY matrix, making it sufficient for preliminary testing in PCFCs.
更多
查看译文
关键词
high-temperature protonic ceramic fuel cells, anode, cermet, tape casting, BCY
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要