The development of new oral vaccines using porous silica

JOURNAL OF PHYSICS-CONDENSED MATTER(2022)

引用 4|浏览10
暂无评分
摘要
Ordered mesoporous silica (OMS) was proved to be an efficient oral adjuvant capable to deliver a wide in size variety of different antigens, promoting efficient immunogenicity. This material can be used in single or polivalent vaccines, which have been developed by a group of Brazilian scientists. The experiments performed with the model protein Bovine Serum Albumin (BSA) gave the first promissing results, that were also achieved by testing the virus like particle surface antigen of hepatitis B (HBsAg) and diphtheria anatoxin (dANA). Nanostructured OMS, SBA-15 type, with bi-dimensional hexagonal porous symmetry was used to encapsulate the antigens either in the mesoporous (pore diameter similar to 10 nm) or macroporous (pore diameter > 50 nm) regions. This silica vehicle proved to be capable to create an inflammatory response, did not exhibit toxicity, being effective to induce immunity in high and low responder mice towards antibody production. The silica particles are in the range of micrometer size, leaving no trace in mice organs due to its easy expulsion by faeces. The methods of physics, usually employed to characterize the structure, composition and morphology of materials are of fundamental importance to develop proper oral vaccines in order to state the ideal antigen load to avoid clustering and to determine the rate of antigen release in different media mimicking body fluids.
更多
查看译文
关键词
oral vaccine, silica, SAXS, x-ray tomography, hepatitis B, diphtheria anatoxin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要