Tea polyphenols alleviates acetochlor-induced apoptosis and necroptosis via ROS/MAPK/NF-κB signaling in Ctenopharyngodon idellus kidney cells.

Aquatic toxicology (Amsterdam, Netherlands)(2022)

引用 29|浏览0
暂无评分
摘要
Overuse of acetochlor pollutes soil and rivers, causing threats to the ecosystem. Studies found that acetochlor exposure could damage multiple organs and tissues in fish and mammal. Tea polyphenols (TP), a natural antioxidant that extracted from tea, has been widely used in food and feed additions. However, the mechanism by which acetochlor causes tissue damage is unclear, and its mitigating agent has yet to be developed. Therefore, we established acetochlor exposure and TP mitigation models by treating Ctenopharyngodon idellus kidney (CIK) cells with 20 μM acetochlor and/or 2.5 μg/mL TP for 24 h, and detected the programmed cell death and its related pathways. The results showed that acetochlor exposure modified antioxidant enzyme activities, induced oxidative stress, resulted in the decline of MMP and ATP levels, enhanced glycolysis and lactate accumulation, and triggered apoptosis and necroptosis in CIK cells. However, TP could inhibit CYP450s expression, activate Nrf2 pathway, enhance antioxidant capacity, further effectively alleviate acetochlor-induced CIK cell death. Overall, the present study proved that acetochlor exposure triggered mitochondrial damage and lactate accumulation-mediated apoptosis and necroptosis through CYP450s/ROS/MAPK/NF-κB pathway. Furthermore, TP could alleviate effectively cell death through relieving oxidative stress and lightening Warburg-like effect.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要